A.) half - life of a radioactive substance is defined as the time during which concentration of the substance becomes half the initial value.
The acids found in alcohol that make it evaporate are called organic acids.
An organic acid is an organic compound that has acidic properties. There are two types: one has a carboxyl (COOH) group, and the other type has a phenol group.
The most common organic acids are those with a carboxyl group and include acetic acid, formic acid, lactic acid and all fatty acids. Perfumes include organic acid in their composition to make them volatile. Volatile substances evaporate easily, and this is important for perfumes. They need to dissipate easily into the surrounding environment and spread their good smell.
Answer:
Mass = 14.3 g
Explanation:
Given data:
Mass of Mg(OH)₂ = 16.0 g
Mass of HCl = 11.0 g
Mass of MgCl₂ = ?
Solution:
Chemical equation:
Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O
Number of moles of Mg(OH)₂ :
Number of moles = mass/ molar mass
Number of moles = 16.0 g/ 58.3 g/mol
Number of moles = 0.274 mol
Number of moles of HCl :
Number of moles = mass/ molar mass
Number of moles = 11.0 g/ 36.5 g/mol
Number of moles = 0.301 mol
Now we will compare the moles of Mg(OH)₂ and HCl with MgCl₂.
Mg(OH)₂ : MgCl₂
1 : 1
0.274 : 0.274
HCl : MgCl₂
2 : 1
0.301 : 1/2×0.301 = 0.150
The number of moles of MgCl₂ produced by HCl are less so it will limiting reactant.
Mass of MgCl₂:
Mass = number of moles × molar mass
Mass = 0.150 × 95 g/mol
Mass = 14.3 g
Given:
Stock dose/concentration of 20% Acetylcysteine (200 mg/mL)
150 mg/kg dose of Acetylcysteine
Weight of the dog is 13.2 lb
First we must convert 13.2 lb to kg:
13.2 lb/(2.2kg/lb) = 6 kg
Then we must calculate the dose:
(150 mg/kg)(6kg) = 900 mg
Lastly, we must calculate the dose in liquid form to be administered:
(900 mg)/(200 mg/mL) = 4.5 mL
Therefore, 4.5 mL of 20% Acetylcysteine should be given.
<span>Not all elements have strong visible spectra in a flame</span>