Answer:
none of the above
Step-by-step explanation:
The problem as written cannot have any of the solutions offered.
For any of those choices, the right side expression will be irrational. The left side expression will be rational for any rational value of x, so cannot be equal to the right-side expression.
The solution is an irrational number near ...
x ≈ 1.33682898582
Answer:
1
Step-by-step explanation:
Numbers to the "right of 0" implies the positive numbers. And an integer has no fractional component. Thus, the first integer to the right of 0 would be 1.
Cheers.
1. 60,30,90 right triangle. y will be hypotenuse/2, x will be
hypotenuse*sqrt(3)/2. So x = 16*sqrt(3)/2 = 8*sqrt(3), approximately 13.85640646
y = 16/2 = 8
2. 45,45,90 right triangle (2 legs are equal length and you have a right angle).
X and Y will be the same length and that will be hypotenuse * sqrt(2)/2. So
x = y = 8*sqrt(2) * sqrt(2)/2 = 8*2/2 = 8
3. Just a right triangle with both legs of known length. Use the Pythagorean theorem
x = sqrt(12^2 + 5^2) = sqrt(144 + 25) = sqrt(169) = 13
4. Another right triangle with 1 leg and the hypotenuse known. Pythagorean theorem again.
y = sqrt(1000^2 - 600^2) = sqrt(1000000 - 360000) = sqrt(640000) = 800 5. A 45,45,90 right triangle. One leg known. The other leg will have the same length as the known leg and the hypotenuse can be discovered with the Pythagorean theorem. x = 6. y = sqrt(6^2 + 6^2) = sqrt(36+36) = sqrt(72) = sqrt(2 * 36) = 6*sqrt(2), approximately 8.485281374
6. Another 45,45,90 triangle with the hypotenuse known. Both unknown legs will have the same length. And Pythagorean theorem will be helpful.
x = y.
12^2 = x^2 + y^2
12^2 = x^2 + x^2
12^2 = 2x^2
144 = 2x^2
72 = x^2
sqrt(72) = x
6*sqrt(2) = x
x is approximately 8.485281374
7. A 30,60,90 right triangle with the short leg known. The hypotenuse will be twice the length of the short leg and the remaining leg can be determined using the Pythagorean theorem.
y = 11*2 = 22.
x = sqrt(22^2 - 11^2) = sqrt(484 - 121) = sqrt(363) = sqrt(121 * 3) = 11*sqrt(3). Approximately 19.05255888
8. A 30,60,90 right triangle with long leg known. Can either have fact that in that triangle, the legs have the ratio of 1:sqrt(3):2, or you can use the Pythagorean theorem. In this case, I'll use the 1:2 ratio between the unknown leg and the hypotenuse along with the Pythagorean theorem.
x = 2y
y^2 = x^2 - (22.5*sqrt(3))^2
y^2 = (2y)^2 - (22.5*sqrt(3))^2
y^2 = 4y^2 - 1518.75
-3y^2 = - 1518.75
y^2 = 506.25 = 2025/4
y = sqrt(2025/4) = sqrt(2025)/sqrt(4) = 45/2
Therefore:
y = 22.5
x = 2*y = 2*22.5 = 45
9. Just a generic right triangle with 2 known legs. Use the Pythagorean theorem.
x = sqrt(16^2 + 30^2) = sqrt(256 + 900) = sqrt(1156) = 34
10. Another right triangle, another use of the Pythagorean theorem.
x = sqrt(50^2 - 14^2) = sqrt(2500 - 196) = sqrt(2304) = 48
Answer:

Step-by-step explanation:
The first equation is 
The second equation is 
When we graph these two equations, <em>they will meet at a point which represent the solution of the two equations</em>.
We can solve the two equations simultaneously to determine their point of intersection.
Let us substitute the second equation into the first equation to get;

Multiply through by 2 to get;

Group similar terms to obtain;

Simplify;

Divide both sides by 3;

Put
into the second equation;



Therefore the graphs of the two functions intersect at (2,3)
See graph in attachment.
Answer:
use desmos. It really helps!
Step-by-step explanation: