Answer:
Redox reaction and single displacement
Explanation:
This reaction is first of all a redox reaction. A redox reaction is a reaction that involves both oxidation and reduction. Oxidation involves increase in oxidation number while reduction involves decrease in oxidation number.
Copper (Cu) had an oxidation number of "0" as a reactant but had an oxidation number of "2+" in the product [Cu(NO₃)₂] hence oxidation occurred.
Nitrogen (N) had an oxidation number of "5+" in the reactant (HNO₃) but had an oxidation number of "4+" in the product (NO₂) hence reduction also occurred.
Also, from the reaction, it can be deduced that copper (Cu) displaced hydrogen (H) from the nitric acid (HNO₃) solution to form copper (II) nitrate [Cu(NO₃)₂]. It should be noted that copper can displace hydrogen because it is higher than hydrogen in the electrochemical series. Hence, this reaction can also be called a single displacement reaction. A single displacement reaction is a reaction in which an atom of an element replaces another atom in a compound (as seen in the equation given in the question).
The percent yield : 79.9%
<h3>Further eplanation
</h3>
Percent yield is the comparison of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
Reaction
Fe(s)+S(s)⇒FeS(s)
The reaction produces 6.29 g of iron(II) sulfide⇒an actual yield
The maximum amount that can be produced is 7.87 g ⇒ A theoretical yield

Answer:
Amount of HCL = 0.00318 L of 3.18 ml
Explanation:
Given:
HCL = 2.5 M
NaOH = 0.53 M
Amount of NaOH = 15 ml = 0.015 L
Find:
Amount of HCL
Computation:
HCL react with NaOH
HCl + NaOH ⇒ NaCl + H₂O
So,
Number of moles = Molarity × volume
Number of moles of NaOH = 0.53 × 0.015
Number of moles of NaOH = 0.00795 moles
So,
Number of moles of HCl needed = 0.00795 mol
es
So,
Volume = No. of moles / Molarity
Amount of HCL = 0.00795 / 2.5
Amount of HCL = 0.00318 L of 3.18 ml