<u>vertex</u>
y = 3(x - 2)² - 4
y = 3((x - 2)(x - 2)) - 4
y = 3(x² - 2x - 2x + 4) - 4
y = 3(x² - 4x + 4) - 4
y = 3(x²) - 3(4x) + 3(4) - 4
y = 3x² - 12x + 12 - 4
y = 3x² - 12x + 8
3x² - 12x + 8 = 0
x = <u>-(-12) +/- √((-12)² - 4(3)(8))</u>
2(3)
x = <u>12 +/- √(144 - 96)</u>
6
x = <u>12 +/- √(48)
</u> <u> </u> 6<u>
</u>x =<u> 12 +/- 6.93</u>
<u /> 6
x = 2 +/- 1.155
x = 2 + 1.155 x = 2 - 1.155
x = 3.155 x = 0.845
y = 3x² - 12x + 8
y = 3(3.155)² - 12(3.155) + 8
y = 3(1.334025) - 3.786 + 8
y = 4.002075 - 3.786 + 8
y = 0.216075 + 8
y = 8.216075
(x, y) = (3.155, 8.216075)
or
y = 3x² - 12x + 8
y = 3(0.845)² - 12(0.845) + 8
y = 3(0.714025) - 10.14 + 8
y = 2.142075 - 10.14 + 8
y = -7.857925 + 8
y = 0.142675
(x, y) = (0.845, 0.142675)
<u>y-intercept</u>
y = 3x² - 12x + 8
y = 3(0)² - 12(0) + 8
y = 3(0) - 0 + 8
y = 0 - 0 + 8
y = 0 + 8
0 = -y + 8
y = 8
(x, y) = (0, 8)
-------------------------------------------------------------------------------------------
<u>vertex</u>
y = 4(x - 5)² = 1
y = 4(x - 5)² - 1
y = 4((x - 5)(x - 5)) - 1
y = 4(x² - 5x - 5x + 25) - 1
y = 4(x² - 10x + 25) - 1
y = 4(x²) - 4(10x) + 4(25) - 1
y = 4x² - 40x + 100 - 1
y = 4x² - 40x + 99
4x² - 40x + 99 = 0
x = <u>-(-40) +/- √((-40)² - 4(4)(99))</u>
2(4)
x = <u>40 +/- √(1600 - 1584)</u>
8
x = <u>40 +/- √(16)</u>
8
x = <u>40 +/- 4</u>
8
x = 5 +/- 1/2
x = 5 + 1/2 x = 5 - 1/2
x = 5 1/2 x = 4 1/2
y = 4x² - 40x + 99
y = 4(5 1/2)² - 40(5 1/2) + 99
y = 4(30 1/4) - 220 + 99
y = 121 - 220 + 99
y = -99 + 99
y = 0
(x, y) = (5 1/2, 0)
or
y = 4x² - 40x + 99
y = 4(4 1/2)² - 40(4 1/2) + 99
y = 4(20 1/4) - 180 + 99
y = 81 - 180 + 99
y = -99 + 99
y = 0
(x, y) = (4 1/2, 0)
<u>y-intercept</u>
y = 4x² - 40x + 99
y = 4(0)² - 40(0) + 99
y = 4(0) - 0 + 99
y = 0 - 0 + 99
y = 0 + 99
y = 99
(x, y) = (0, 99)
--------------------------------------------------------------------------------------------
<u>vertex</u>
y = (x - 1)² = 2
y = (x - 1)² - 2
y = ((x - 1)(x - 1)) - 2
y = (x² - x - x + 1) - 2
y = x² - 2x + 1 - 2
y = x² - 2x - 1
x² - 2x - 1 = 0
x = <u>-(-2) +/- √((-2)² - 4(1)(-1))</u>
2(1)
x = <u>2 +/- √(4 + 4)</u>
2
x = <u>2 +/- √(8)</u>
2
x = <u>2 +/- 2.83</u>
2
x = 1 +/- 1.415
x = 1 + 1.415 x = 1 - 1.415
x = 2.415 x = 0.415
y = x² - 2x - 1
y = (2.145)² - 2(2.145) - 1
y = 4.60125 - 4.029 - 1
y = 0.57225 - 1
y = 0.42775
(x, y) = (2.415, 0.42775)
or
y = x² - 2x - 1
y = (0.415)² - 2(0.415) - 1
y = 0.172225 - 0.83 - 1
y = -0.657775 - 1
y = -1.657775
(x, y) = (0.415, -1.657775)
<u>y-intercept</u>
y = x² - 2x - 1
y = (0)² - 2(0) - 1
y = 0 - 0 - 1
y = 0 - 1
y = -1
(x, y) = (0, -1)
Answer:
Step-by-step explanation:
Let 25% solution is x liters, then 50% solution is (80 - x) liters.
<u>Acid content is going to be same:</u>
- 0.25x + 0.5(80 - x) = 80*0.4
- 0.25x - 0.5x + 40 = 32
- 0.25x = 8
- x = 8/0.25
- x = 32 liters
So 32 liters of 25% solution and 80 - 32 = 48 liters of 50% solution
Answer:
$4,800
Step-by-step explanation:
The maximum contribution for traditional IRA in 2019 = $6000
Given that;
karen has a salary of $33,000 and rental income of $33,000; then total income = $66,000
AGI phase-out range for traditional IRA contributions for a single taxpayer who is an active plan participant is $64,000 – $74,000.
PhaseOut can be calculated as:
=
= 0.2 * 6000
= 1200
Therefore, the maximum amount that Karen may deduct for contributions to her traditional IRA for 2019 = The maximum contribution for traditional IRA in 2019 - PhaseOut
= $6000 - $1,200
= $4,800
Answer:
The mean number of scores per game is 8
Step-by-step explanation:
Since we know we can find the mean by adding all the numbers and dividing them by many numbers there were. Once you add 8, 14, 4, 7, 6, 4, and 7, you will get 64. Since there were 8 numbers, you divide 64 by 8 to get 8.
Answer:
Step-by-step explanation:
Any fraction where the numerator is bigger than the denominator is a fraction greater than 1. EX. 3/2