Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:

Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
![Ksp=[Ag^+][Cl^-]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%2B%5D%5BCl%5E-%5D)
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:

I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:

Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!
C. You should ALWAYS ask the teacher if you don't get something; your friends could be wrong, don't guess it, and NEVER cheat. Hope this helps!!
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Galvanization is defined as the process in which a protective layer of zinc is applied to iron or steel to prevent the metal from rusting.
Zinc prevents the oxidation of iron and acts as a reducing agent in the process.
The half reaction for the process follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u> 
Net chemical equation: 
Hence, the balanced chemical equation is written above.