the mass in grams of one mole substance is the molar mass of the element
Answer:
This is hilarious, every time I ignite, they feed me water, little do they know this heat will defeat, and hydrogen only makes me stronger!
Explanation:
When Hg is burning, it uses the oxygen from H2O and turns it into hydrogen gas, and that contributes to the burning.
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!
The chemical reaction is expressed as:
3Ba(NO3)2 + 2Na3PO4 = Ba3(PO4)2 + 6NaNO3
To determine the percent yield, we need to determine the theoretical yield of the reaction from the given amounts of the reactants. We do as follows:
0.3 mol 3Ba(NO3)2 ( 2 mol Na3PO4 / 3 mol Ba(NO3)2) = 0.2 mol Na3PO4
Therefore, the limiting reactant would be Ba(NO3)2 since it is consumed completely in the reaction.
Theoretical yield = 0.3 mol 3Ba(NO3)2 ( 1 mol Ba3(PO4)2 / 3 mol Ba(NO3)2) = 0.1 mol Ba3(PO4)2
Percent yield = actual yield / theoretical yield = 0.095 mol Ba3(PO4)2 / 0.1 mol Ba3(PO4)2 x 100 = 95%