Answer:
endo 2 17uni
Step-by-step explanation:
Because there are 4 students who passed in all subjects, we can say that only 2 students passed in English and Mathematics only, only 3 students passed in Mathematics and Science only, and no one passed in English and Science only.
Given that we have deduced the number of students who passed in two subjects, we can now solve for the number of students who passed only one subject.
English = 15 - (4 + 2 + 0) = 9
Mathematics = 12 - (4 + 3 + 2) = 3
Science = 8 - (4 + 3 + 0) = 1
1. In English but not in Science,
9 + 2 = 11
2. In Mathematics and Science but not in English
3 + 3 + 1 = 7
3. In Mathematics only
= 3
3. More than one subject only
3 + 4 + 2 + 9 = 18
It will really be helpful if you draw yourself a Venn Diagram for this item.
Answer:
I'm assuming you want to know the amount of child and adult tickets sold. 450 student tickets were sol, and 300 adult tickets.
Step-by-step explanation:
Solve for the first variable in one of the equations, then substitute the result into the other equation.