Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Answer:
Force
Explanation:
The mass of an object is the quantity of matter it contains. It is measured in kilograms.
Acceleration is the ratio of the change in the velocity of an object to the change in time. It is measured in m/
.
When the mass of an object is multiplied with its acceleration, this gives the average force applied on the object. As force is defined as agent that can change the state of an object.
i.e F = m × a
where F is the force, m is the mass of the object and a its acceleration.
The two major classes of force are; contact force and field force.
Answer: Brittle
Explanation:
took the test and I chose Soft, Soft is the wrong answer don't choose it. The CORRECT ANSWER IS BRITTLE
Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.