Answer:
X= Be
Y= B
Z=O
Explanation:
From the description of the compound XCl2, among the options listed only beryllium can form such compound with three lone pairs in the two chlorine atoms and no lone pair on the central atom X.
From the description of YCl3, only Boron among the options listed can form such a compound with no lone pair on the central atom and three lone pairs on each of the chlorine atoms.
From the description of ZCl2, only oxygen forms the compound OCl2 among the elements listed where oxygen possesses two lone pairs and each chlorine atom possesses three lone pairs each.
214, 84 Po ----Beta decay
1. Weird things like the one described above do not happen on a ramdom basis becuause molecules usually move within any enclosure in a ramdom manner. Thus, it is not possible for some types of particles to aggregate in one point while other types of molecule aggreagate in another point. Based on the kinetic energy that is available for each particle, each particle will move random
through the available space, colliding with one another and with the wall of container.
2. It will be a difficult thing to live in a Maxwell' demon world because, things will happen unpredictably and one will never know what to expect next because anything can happen at anytime. For instance, if one is drinking a glass of water, some of the particles of the water may just decide to aggregate to one part of the cup and start boiling. So, for someone who is taking a glass of water, the water may start boiling right inside his mouth when he is drinking, that will be a bad experience. When one is driving a car, the petrol particles may just decide to freeze up when one is busy speeding on the highway; that can cause a very serious accident. Thus, a world where the Maxwell law operates will be a chaotic world.
The colloid formed by ice cream remains stable only at cold temperatures. When ice cream is warmed above freezing, its dispersed particles absorb energy and begin to move faster. When the fast-moving particles collide, they sometimes stick together.
We are going to use Avogadro's constant to calculate how many molecules of
carbons dioxide exist in lungs:
when 1 mole of CO2 has 6.02 x 10^23 molecules, so how many molecules in
CO2 when the number of moles is 5 x 10^-2
number of molecules = moles of CO2 * Avogadro's number
= 5 x 10^-2 * 6.02 x 10^23
= 3 x 10^22 molecules
∴ There are 3 x 10^22 molecules in CO2 exist in lungs