Answer:
1 / f = 1 / i + 1 / o thin lens equation
1 / i = 1 / f - 1 / o = (o - f) / (o * f)
i = o * f / (o - f)
i = 54.2 * 12.7 / (54.2 - 12.7) = 16.6 cm image distance
Image is real and inverted and 16.6 / 54.2 * 6 = 1.94 cm tall
Approximately 150-200 species.
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

Answer:
a,e,d
Explanation:
i got it right when i was doing study island
Answer: 
Explanation:
Given
Initial position of object is (4.4 i+5 j)
Final position of object is (11.6 i -2 j)
Force acting (4i-9j)
Work done is given by

Initial kinetic energy

Change in kinetic energy is equal to work done by object
