I think A, because rodents already live in winter months when little food is available, but I'm not sure.
Answer:
The right solution will be the "2v".
Explanation:
For something like an object underneath pure rolling the speed at any point is calculated by:
⇒ 
Although the angular velocity was indeed closely linked to either the transnational velocity throughout particular instance of pure rolling as:
⇒ 
Significant meaning is obtained, as speeds are in the same direction. Therefore the speed of rotation becomes supplied by:
⇒ 
On substituting the estimated values, we get
⇒ 
⇒ 
So that the velocity will be:
⇒ 
⇒ 
Isaac Newton was experimenting with prisms and discovered that all light is made up of the colors of the rainbow.
The correct answer is A.
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />