The velocity of the red cart after the collision is 2 m/s
From the law of conservation of momentum, initial momentum of system = final momentum of system.
m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄ where m₁ = mass of red cart = 4 kg, v₁ = velocity of red cart before collision = + 4 m/s, v₃ = velocity of red cart after collision, m₂ = mass of blue cart = 1 kg, v₂ = velocity of blue cart before collision = 0 m/s (since it is initially at rest) and v₄ = velocity of blue cart after collision = + 8 m/s.
Substituting the values of the variables into the equation, we have,
m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄
4 kg × 4 m/s + 1 kg × 0 m/s = 4v₃ + 1 kg × 8 m/s
16 kgm/s + 0 kgm/s = 4v₃ + 8 kgm/s
16 kgm/s = 4v₃ + 8 kgm/s
16 kgm/s - 8 kgm/s = (4 kg)v₃
(4 kg)v₃ = 8 kgm/s
Divide both sides by 4 kg, we have
v₃ = 8 kgm/s ÷ 4 kg
v₃ = 2 m/s
The velocity of the red cart after the collision is 2 m/s.
Learn more about conservation of momentum here:
brainly.com/question/7538238
Answer:
Nanotechnology is the term given to those areas of science and engineering where phenomena that take place at dimensions in the nanometre scale are utilised in the design, characterisation, production and application of materials, structures, devices and systems.
Answer:
A:
Explanation:
Plane mirrors always form virtual images meaning although the object appears to be in the other side of the mirror the light rays actually originate in front of it. The image is inverted meaning that when you lift your right hand it shows your left hand rising. and with true orientation.
The force constant of the spring is approximately 24.038 newtons per meter.
As we are talking about Simple Harmonic Motion. In this exercise we need to determine the Spring Constant (
), in newtons per meter, from the equation of the Period (
), in seconds, which is described below:
(1)
Where
is the mass of the moving element, in kilograms.
If we know that
and
, then the spring constant of the spring is:




The force constant of the spring is approximately 24.038 newtons per meter.
Please see this question related to Simple Harmonic Motion for further details: brainly.com/question/17315536