16. Solids cannot transport heat through convection. Because solids are stuck in place so they can't flow and since they can't flow, there is no convection.
17. It is because the metal conducts heat faster that it feels colder than the wood, which conducted heat slower. In other words metals are good conductors of heat. It takes away your body heat as you touch it and which makes your body temperature to drop, therefore you feel the coldness when you touch a piece of metal.
Answer:
speed = 20 m/s
Explanation:
speed = frequency * wavelength
speed = 4 * 5
speed = 20 m/s
Answer:
v = 10 [m/s].
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
Answer:
3234.2 W
Explanation:
Since intensity I = Power/Area. The intensity of the light from the sun, I = power radiated by sun/area of sphere of radius, r = 1.5 × 10¹¹ m.
So, I = 3.9 10²⁶W/4π(1.5 × 10¹¹ m)² = 2.069 × 10³ W/m².
Now, the power radiated on the patch of area 0.570 m² at the equator is
P = Icos27/A = 2.069 × 10³ W/m² cos27/0.570 m² = 1843.49/0.570 = 3234.2 W