<span>To solve this problem, we can use this formula d = rd (distance = rates x time)
She runs at a speed of 9 mph and walks at a speed of 3 mph.
Her distance running is
d = 9tr
where tr is the time she spends running
Her distance walking is
d = 3tw
where tw is the time she spends walking
The distances are the same so
9tr = 3tw
We also know that the total time is 5 hours
tr + tw = 5
tr = 5-tw
Substitute this value of tr in the first equation
9tr = 3tw
9(5-tw) = 3tw
45-9tw = 3tw
45 = 12tw
3.75= tw
Denise will spend 3.75 hours (3 hours, 45 minutes) walking back and 1.25 hours (1 hour, 15 minutes) running.</span>
Answer:
B or D would be the best options for this question
The rate at which the water from the container is being drained is 24 inches per second.
Given radius of right circular cone 4 inches .height being 5 inches, height of water is 2 inches and rate at which surface area is falling is 2 inches per second.
Looking at the image we can use similar triangle propert to derive the relationship:
r/R=h/H
where dh/dt=2.
Thus r/5=2/5
r=2 inches
Now from r/R=h/H
we have to write with initial values of cone and differentiate:
r/5=h/5
5r=5h
differentiating with respect to t
5 dr/dt=5 dh/dt
dh/dt is given as 2
5 dr/dt=5*-2
dr/dt=-2
Volume of cone is 1/3 π![r^{2} h](https://tex.z-dn.net/?f=r%5E%7B2%7D%20h)
We can find the rate at which the water is to be drained by using partial differentiation on the volume equation.
Thus
dv/dt=1/3 π(2rh*dr/dt)+(
*dh/dt)
Putting the values which are given and calculated we get
dv/dt=1/3π(2*2*2*2)+(4*2)
=1/3*3.14*(16+8)
=3.14*24/3.14
=24 inches per second
Hence the rate at which the water is drained from the container is 24 inches per second.
Learn more about differentaiation at brainly.com/question/954654
#SPJ4
Answer:
what is the question?
Step-by-step explanation: