1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
10

Calculate the force on an object that has a mass of 12 kg and an acceleration of 4 m/s^2

Physics
1 answer:
kati45 [8]3 years ago
8 0
Remember Newton's Second Law F = mass * acceleration

mass = 12 kg
acceleration = 4 m/s^2

F = 12 * 4 = 48 N
You might be interested in
A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 440 N
irinina [24]

Answer:

a) 0.275 m b) 13.6 J

Explanation:

In absence of friction, the energy is exchanged between the spring (potential energy) and the cookie (kinetic energy), so at any point, the sum of both energies must be the same:

E = ½ kx2 + ½ mv2

If we take as initial state, the instant when the cookie is passing through the spring’s equilibrium position, all the energy is kinetic, and we know that is equal to 20.0 J.

After sliding to the right, while is being acted on by a friction force, it came momentarily at rest. At this point, the initial kinetic energy, has become potential elastic energy, in part, and in thermal energy also, represented by the work done by the friction force.

So, for this state, we can say the following:

Ki = Uf + Eth = ½* k*d2 + Ff*d

20.0J = ½ *440 N/m* d2 + 11.0 *d, where d is the compressed length of the spring, which is equal to the distance travelled by the cookie before coming momentarily at rest.

We have a quadratic equation, that, after simplifying terms, can be solved as follows, applying the quadratic formula:

d = -0.05/2 +/- √0.090625 = -0.025 +/- 0.3 = 0.275 m (we take the positive root)

b) If we take as our new initial status the moment at which the spring is compressed, and the cookie is at rest, all the energy is potential:

E = Ui = 1/2 k d²

In this case, d is the same value that we got in a), i.e., 0.275 m (as the distance travelled by the cookie after going through the equilibrium point is the same length that the spring have been compressed).

E= 1/2 440 N/m . (0.275)m² = 16.6 J

When the cookie passes again through the equilibrium position, the energy will be in part kinetic, and in part, it will have become thermal energy again.

So, we can write the following equation:

Kf = Ui - Ff.d = 16.6 J - 11.0 (0.275) m = 16.6 J - 3.03 J = 13.6 J

3 0
3 years ago
Your cat "Ms." (mass 7.00 {\rm kg}) is trying to make it to the top of a frictionless ramp 2.00 {\rm m} long and inclined upward
lbvjy [14]

Answer:

Final velocity at the top of the ramp is 6.58m/s

Explanation

Check the attachment

4 0
3 years ago
In a motor, the combined effect of electric currents and magnetic forces turn electrical energy into which of the following?
lord [1]
A motor is built to use all those things and produce mechanical energy.
6 0
3 years ago
Read 2 more answers
The radioactive 60co isotope is used in nuclear medicine to treat certain types of cancer. Calculate the wavelength and frequenc
Ivanshal [37]

1. Frequency: 3.23\cdot 10^{20} Hz

The energy given is the energy per mole of particles:

E=1.29\cdot 10^{11} J/mol

1 mole contains a number of Avogadro of particles, N_A, equal to

N_A=6.022\cdot 10^{23} particles

So, by setting the following proportion, we can calculate the energy of a single photon:

1.29 \cdot 10^{11} J/mol : 6.022 \cdot 10^{23} ph/mol = E_1 : 1 ph\\E_1 = \frac{(1.29\cdot 10^{11} J/mol)(1 ph)}{6.022\cdot 10^{23} ph/mol}=2.14\cdot 10^{-13} J

This is the energy of a single photon; now we can calculate its frequency by using the formula:

E_1 = hf

where

h=6.63\cdot 10^{-34} Js is the Planck's constant

f is the photon frequency

Solving for f, we find

f=\frac{E_1}{h}=\frac{2.14\cdot 10^{-13} J}{6.63\cdot 10^{-34} Js}=3.23\cdot 10^{20} Hz

2. Wavelength: 9.29\cdot 10^{-13} m

The wavelength of the photon is given by the equation:

\lambda=\frac{c}{f}

where

c=3\cdot 10^8 m/s

is the speed of the photon (the speed of light). Substituting,

\lambda=\frac{3 \cdot 10^8 m/s}{3.23\cdot 10^{20} Hz}=9.29\cdot 10^{-13} m

6 0
3 years ago
What type of charges attract each other
Ksivusya [100]

Answer:

opposite charges attract each other while same charges repel each other.

~batmans wife dun dun dun.....

4 0
3 years ago
Other questions:
  • Which of the following is a chemical equation that accurately represents what happens when sulfur and oxygen are produced from s
    12·2 answers
  • Calculate the displacement of a car waxing point of 11 m to the final positions of 4 meters
    5·1 answer
  • MANY PTS FAST
    15·1 answer
  • How much work, in N*m, is done when a 10.0 N force moves an object 2.5 m?
    9·1 answer
  • What is an example of light energy converted into electrical energy?
    9·1 answer
  • PLEASE HELP I WILL GOVE BRAINLIEST TO FIRST CORRECT ANSWER!!!!!
    14·1 answer
  • Two eagles fly directly toward one another, the first at 15.0 m/s and the second at 20.0 m/s. Both screech, the first one emitti
    5·1 answer
  • A 4.40-m-long, 500 kg steel uniform beam extends horizontally from the point where it has been bolted to the framework of a new
    8·1 answer
  • Two spherical objects with a mass of 3.17 kg each are placed at a distance of 2.96 m apart. How many electrons need to leave eac
    14·1 answer
  • Reasons why inductors opposes charges passing through it<br>​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!