By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
<h3>How to solve a system of equations</h3>
In this question we have a system formed by a <em>linear</em> equation and a <em>non-linear</em> equation, both with no <em>trascendent</em> elements and whose solution can be found easily by algebraic handling:
x - y = 5 (1)
x² · y = 5 · x + 6 (2)
By (1):
y = x + 5
By substituting on (2):
x² · (x + 5) = 5 · x + 6
x³ + 5 · x² - 5 · x - 6 = 0
(x + 5.693) · (x - 1.430) · (x + 0.737) = 0
There are three solutions: x₁ ≈ 5.693, x₂ ≈ 1.430, x₃ ≈ - 0.737
And the y-values are found by evaluating on (1):
y = x + 5
x₁ ≈ 5.693
y₁ ≈ 10.693
x₂ ≈ 1.430
y₂ ≈ 6.430
x₃ ≈ - 0.737
y₃ ≈ 4.263
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
To learn more on nonlinear equations: brainly.com/question/20242917
#SPJ1
Answer:

Step-by-step explanation:
The experimental probability can be defined as the ratio of the number of times any particular event has occurred to the total number of times that event has taken place.
Experimental probability = P = No. of event occurrences / total number of occurrences.
In our question statement,
No of naturally occurring triplets are = 3375
Total number of births = 5 million = 5,000,000
Putting values in equation.


You think I know right? yeah so no way boy I'm so sorry not my intencion
Answer:
This is the Quotient of Powers of property. HOPE THIS HELPS!!!
Step-by-step explanation:
The answer is D.
The Graph is translated up 2 units due to the "+2".
Hope that helps.