Answer:
a. The central atom is sulfur
b. SF2
c. The central atom has two lone pairs
d. The ideal angle between the sulfur-fluorine bonds is 109.5°
e. I expect the actual angle between the sulfur-fluorine bonds to be less than 109.5° because unbonded pairs repel bonded pairs more than bonded pairs repel other bonded pairs. So the bonds here will be pushed closer than normal
In a balanced chemical equation, we have two numbers that indicate two different factors. The definitions of these numbers are as follows:
1- Molar ratio: This ratio represents the ratio between the number of moles of any two substances in the balanced equation
2- The coefficients in the balanced chemical equation: These numbers represent the numbers of particles of each of the substances taking place in this chemical equation.
<span>We need to calculate the equivalent amount in units of moles of ammonium ions from the mass units. For this we need the molar mass of the substances involved. We calculate as follows:
31.3 g </span>(NH4)2CO3 ( 1 mol (NH4)2CO3 / 96.09 g (NH4)2CO3) ( 2 mol NH4 / 1 mol (NH4)2CO3 ) = 0.65 mol <span>ammonium ions</span>
Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
<span>A. Commercial cooking
</span>