Bronsted lowry bases
NO2- amd OH-
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
Answer:
1.023 J / g °C
Explanation:
m = 37.9 grams
ΔT = 25.0*C
H = 969 J
c = ?
The equation relating these equation is;
H = mcΔT
making c subject of formulae;
c = H / mΔT
c = 969 J / (37.9 g * 25.0*C)
Upon solving;
c = 1.023 J / g °C
Answer: G Atom 1 and Atom 4.. hope this helps and good luck!
Answer:
For instance equation C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but PhC2H5 + O2 = PhOH + CO2 + H2O will; Compound states [like (s) (aq) or (g)] are not required. If you do not know what products are enter reagents only and click 'Balance'. In many cases a complete equation will be suggested.
Explanation: