Answer:

Step-by-step explanation:
Given














Therefore,

Answer:
6^4=1296
6^3=216
1296.y= 216. Y-2
1296.y -216. Y=-2
1080.y=-2
Y=-1/540
Step-by-step explanation:
Answer:
A+B=3
BC+B=18
BC+A=6 ;;
Step-by-step explanation:
sorrry i dont know that im sorry
Answer:
370 stores
Step-by-step explanation:
Given data
initial number of stores P= 200
r= 8%
t= 1999-2007= 8 years
Let us apply the compound interest expression to find the final amount of stores
A= P(1+r)^t
A= 200(1+0.08)^8
A= 200(1.08)^8
A= 200*1.85
A=370
Hence the number of stores in 2007 is 370 stores
Answer:
A: 22.1
Step-by-step explanation:
34/100 = ?/65 so when you cross multiply you get the value