Answer:
The rate of gas diffusion is directly proportional to temperature
Explanation:
The rate of gas diffusion is
a) directly proportional to square root of temperature
b) inversely proportional to the square root of density
c) directly proportional to pressure
d) inversely proportional time and square root of molecular mass
Thus, option A is correct
Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q=?
- m= 45 g
- c= 4.184

- ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 C
Replacing:
Q= 4.184
* 45 g* 17.5 C
Solving:
Q=3,294.9 J
<u><em>The heat absorbed by the sample of water is 3,294.9 J</em></u>
<u><em></em></u>
Answer:
In photosynthesis, chlorophyll, water, and carbon dioxide are reactants. GA3P and oxygen are products. In photosynthesis, water, carbon dioxide, ATP, and NADPH are reactants.
Explanation:
Answer:
<em>2 Hg(g) + O₂(g) → 2 HgO(s) ΔG° = -180.8 kJ </em>
Explanation:
If we know the ΔG° of a chemical reaction it is possible to calculate the equilibrium constant (k) of this procedure with the next equation:
ln Keq = -ΔG° / RT (1)
Where: Keq is equilibrium contant, ΔG° is standard state free energy change, R is gas constant and T is temperature.
Watching (1), it is possible to know that the large negative ΔG° the largest equilibrium constant. That is because R and T are always positive and to cancel the negative of equation it is necessary that ΔG° be negative.
Knowing this, is the oxidation of Hg the reaction that has the largely negative ΔG°. So, this reaction will have the largest equilibrium constant.
<em>2 Hg(g) + O₂(g) → 2 HgO(s) ΔG° = -180.8 kJ </em>
CaCO₃(s) → CaO(s) + CO₂(g) ΔG° =+131.1 kJ
3 O₂(g) → 2 O₃(g) ΔG° = +326 kJ
Fe₂O₃(s) + 3 CO(g) → 2 Fe(s) + 3 CO₂(g) ΔG° = -28.0 kJ
I hope it helps!