Imagine we have <span>mass of solvent 1kg (1000g)
According to that: </span>

= 4.8 mole * 98 g/mole = 470g


m(H2SO4) which is =<span>470g
</span><span>m(solution) = m(H2SO4) + m(solvent) = 470 + 1000 = 1470 g
d(solution) = m(solution) / V(solution) =>
=> 1.249 g/mL = 1470 g / V(solution) =></span>
NaCl and H2S will experience dipole-dipole interaction because they are permanently polarized.
Answer:
Percentage error = 1.88 %
Solution:
Data Given:
Mass of Sample = 20.46 g
Volume of Sample = 43.0 mL - 40.0 mL = 3.0 mL
Formula Used:
Density = Mass / Volume
Putting values,
Density = 20.46 g / 3.0 mL
Density = 6.82 g.mL⁻¹
Percentage Error:
Experimental Value = 6.82 g.mL⁻¹
Accepted Value = 6.95 g.mL⁻¹
= 6.82 g.mL⁻¹ / 6.95 g.mL⁻¹ × 100 = 98.12 %
Percentage Error = 100 % - 98.12 %
Percentage error = 1.88 %
Decomposition is a chemical reaction that breaks the reactant into two or more products. Moles of nitrogen gas
in the cylinder is 1.63 moles.
<h3>What is the ideal gas equation?</h3>
The ideal gas equation states the relation of the hypothetical ideal gas according to the pressure, volume, temperature and moles of the gas. It is given by,

Where,
Pressure (P) = 2000 kPa
Volume (V) = 2L
Temperature (T) = 295 K
Gas constant (R)= 0.08206
Substituting values in the equation:

Therefore, 1.63 moles are produced.
Learn more about ideal gas equation here:
brainly.com/question/26720901
Answer:
It depends what formula you are talking about.
Explanation:
please further explain so I can be sure.