No, the biosphere does not exhibit a clear boundary as life always comes to an end.
The biosphere comprises all the living things of the world, like all the plants and animals. It is considered as the global ecosystem, that is, the gathering of all the planet's ecosystems. It comprises the land and the atmosphere. It is usually considered as the zone of life, where all the species of the planet thrives.
Answer: They are arranged by atomic number.
This means the nucleus of an atom is always positively charged
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
Given:3.40g sample of the steel used to produce 250.0 mLSolution containing Cr2O72−
Assuming all the Cr is contained in the BaCrO4 at the end.
(0.145 g BaCrO4) / (253.3216 g BaCrO4/mol) x (250.0 mL / 10.0 mL) x (1 mol Cr / 1 mol BaCrO4) x (51.99616 g Cr/mol / (3.40 g) = 0.219 = 21.9% Cr