62 triangle a and 59 triangle b
Answer:

Step-by-step explanation:
We want to calculate the right-endpoint approximation (the right Riemann sum) for the function:

On the interval [-1, 1] using five equal rectangles.
Find the width of each rectangle:

List the <em>x-</em>coordinates starting with -1 and ending with 1 with increments of 2/5:
-1, -3/5, -1/5, 1/5, 3/5, 1.
Since we are find the right-hand approximation, we use the five coordinates on the right.
Evaluate the function for each value. This is shown in the table below.
Each area of each rectangle is its area (the <em>y-</em>value) times its width, which is a constant 2/5. Hence, the approximation for the area under the curve of the function <em>f(x)</em> over the interval [-1, 1] using five equal rectangles is:

Hi there,
This is the original inequality equation:

So, we first need to find the critical points of equality, and we can do that by switching the less than sign to an equal sign.

Now, we multiply both sides by x + 1:

Then, we multiply both sides by x - 1:

Next, we subtract x² from both sides:

After that, we solve for x. We do this by adding -x to both sides and dividing by 2. Doing so gives us x = 0, which is our first critical point. We need to find a few more critical points by testing x = -1 and x = 1. Here is how we do that:
<span>x = <span>−1 </span></span>(Makes left denominator equal to 0)<span>x = 1 </span>(Makes right denominator equal to 0)Check intervals in between critical points. (Test values in the intervals to see if they work.)<span>x <<span>−1 </span></span>(Doesn't work in original inequality)<span><span><span>−1 </span>< x </span><0 </span>(Works in original inequality)<span><span>0 < x </span>< 1 </span>(Doesn't work in original inequality)<span>x > 1 </span><span>(Works in original inequality)
Therefore, the answer to your query is
-1 < x < 0 or x > 1. Hope this helps and have a phenomenal day!</span>
Answer:
She has 60% of money left.
Step-by-step explanation:
You have to find out how much Php that Lei has left :
Php 150 - Php 48 - Php 12 = Php 90
She has a remaining of Php 90. Next, you have to find the percentage by dividing hy original amount and then, multiply by 100 :
(90/150)×100 = (3/5)×100 = 60%
Take the root of both sides, and solve.
x = 2i sqrt 2, -2i sqrt 2.