Answer:
At a combined speed of 6 in/min, it takes us 24 mins to clean the wall
Step-by-step explanation:
Since the question did not provide the speed with which each student cleans, we can make assumptions. This is so that we can solve the question before us
Assuming student 1 cleans at a speed of 2 inches per minute, student 2 cleans at a speed of 2½ inches per minute & student 3 cleans at a speed of 1½ inches per minute.
Let's list the parameters we have:
Height of wall (h) = 12 ft, Speed (student 1) = 2 in/min, Speed (student 2) = 2½ in/min, Speed (student 3) = 1½ in/min
Speed of cleaning wall = Height of wall ÷ Time to clean wall
Time to clean wall (t) = Height of wall ÷ Speed of cleaning wall
since students 1, 2 and 3 are working together, we will add their speed together; v = (2 + 2½ + 1½) = 6 in/min
1 ft = 12 in
Time (t) = h ÷ v = (12 * 12) ÷ 6 = 144 ÷ 6
Time (t) = 24 mins
Answer:
-6
Step-by-step explanation:
3n = n² - 54
n² - 3n - 54 = 0
n² - 9n + 6n - 54 = 0
n(n - 9) + 6(n - 9) = 0
(n - 9)(n + 6) = 0
n = 9 , -6
It's a simultaneous equation:
Steps:
1.Number the equations..
a+b=77 -1
a-b=13 -2
2. Choose what variable you want to use. In this case I would use the "b". Since the signs in front of the "b's" are different, add the two equations together
a + b = 77
+ + +
a (-b) = 13
Which gives;
2a = 90
Then solve to find a:
2a=90
a= 90/2
a=45
3.Then plug the "a" value into any of the original equations to find the "b" value. I would use equation 1 since the all the variables are positive.
a + b = 77
(45) + b = 77
b=77-45
b=32
4.Solution
a=45
b=32
x = total amount of gumballs
let's start subtracting the balls she's giving away


and we also know that after all that has been subtracted, she's only left with 5, so we can say that
