antagonism
When two hormones cancel each other out or have opposite effects it is called antagonism.
<h3>What is an example of antagonism?</h3>
- Traditional examples of antagonistic hormones include insulin and glucagon.
- In contrast to glucagon, which stimulates glycogenolysis, or the conversion of glycogen to glucose, insulin stimulates glycogenesis, or the conversion of glucose to glycogen.
<h3>What does the term "antagonistic hormones" mean?</h3>
- Antagonistic hormones are those that work to bring body circumstances back from extremes to within acceptable bounds.
- An illustration of how the endocrine system maintains homeostasis through the action of antagonistic hormones is the regulation of blood glucose concentration (by negative feedback).
<h3>How do antagonists to hormones function?</h3>
- Infertility, endometriosis, and uterine fibroids are just a few of the diseases that gonadotropin releasing hormone (GnRH) antagonists are used to treat in women.
- GnRH is a hormone released by the hypothalamus that is the target of GnRH antagonists, which stop it from functioning.
To learn more about antagonism visit:
brainly.com/question/2916867
#SPJ4
Restriction enzymes and or restriction endonucleases are involved at recognizing specific sequence of nucleotides and cutting or splicing them at appropriate regions to produce fragments that can either be sticky ends or blunt ends depending on where they cut and the nature of nucleotides involved within the fragments. They play an important role in genetic engineering, as geneticists can use them for placing into extra chromosomal information and or content of plasmids in certain bacteria, from other sources, for instance antibiotics, grow and or produce many individual colonies of bacteria, isolate them and one would have many sequences for instance that can code for an antibiotic that can be extracted and used further. Assuming the bacteria's plasmid can take in that sequence.
Germ cell's I believe. These are cells that includes half your genome in order to reproduce.
In ocean waves, water particles move in circles and energy moves horizontally. Ocean waves are orbital progressive waves. The water molecules that make up the wave move in circles, or orbits, as the wave progresses. The ocean orbital waves get their start when wind blows on the open ocean, A gentle wind doesn't have much of an effect, but the stronger wind becomes the more it pushes against the water. It transfers energy to the water as it makes peaks and whitecaps in the water's surface.