Properties of equality have nothing to do with it. The associative and commutative properties of multiplication are used (along with the distributive property and the fact of arithmetic: 9 = 10 - 1).
All of these problems make use of the strategy, "look at what you have before you start work."
1. = (4·5)·(-3) = 20·(-3) = -60 . . . . if you know factors of 60, you can do this any way you like. It is convenient to ignore the sign until the final result.
2. = (2.25·4)·23 = 9·23 = 23·10 -23 = 230 -23 = 207 . . . . multiplication by 4 can clear the fraction in 2 1/4, so we choose to do that first. Multiplication by 9 can be done with a subtraction that is often easier than using ×9 facts.
4. = (2·5)·12·(-1) = 10·12·(-1) = (-1)·120 = -120 . . . . multiplying by 10 is about the easiest, so it is convenient to identify the factors of 10 and use them first. Again, it is convenient to ignore the sign until the end.
5. = 0 . . . . when a factor is zero, the product is zero
Answer:
Rational
Step-by-step explanation:
A rational number is a number expressed as a fraction. So the number could be a decimal or percent.
Hope This Helps :)
Get y by itself so subtract 2x from both sides. So next it would be -4y=-2x+2. To get y by itself divide both sides by -4. So then it would be y= -2/-4x +2/-4. They both reduce down to y=1/2x-1/2. So the slope is 1/2 because the formula y=mx+b
m=slope. Hope this helps! :)
The Bernoulli equation is almost identical to the standard linear ODE.

Compare to the basic linear ODE,

Meanwhile, the Riccati equation takes the form

which in special cases is of Bernoulli type if

, and linear if

. But in general each type takes a different method to solve. From now on, I'll abbreviate the coefficient functions as

for brevity.
For Bernoulli equations, the standard approach is to write


and substitute

. This makes

, so the ODE is rewritten as

and the equation is now linear in

.
The Riccati equation, on the other hand, requires a different substitution. Set

, so that

. Then you have



Next, setting

, so that

, allows you to write this as a linear second-order equation. You have



where

and

.
Answer:
y = -7x + 12
Step-by-step explanation:
<em>y = mx + b</em>
The <em>m </em>(slope) is -7 and the <em>y </em>is 12, substitute the numbers into the equation