◆ COMPLEX NUMBERS ◆
125 ( cos 288 + i sin 288 ) can be written as -
125.e^i( 288)
125.e^i( 288 +360 )
125.e^i( 288+ 720)
[ As , multiples of 360 can be added to an angle without changing any trigonometric functions or sign ]
To find the cube root , take the cube root of above 3 expressions ,
We get -
5 e^( i 96 )
5 e^( i 216 )
5 e^( i 336 )
Now using Euler's formula , We rewrite above as -
5 ( cos 96 + i sin 96 )
5(c os 216 + i sin 216 )
5 ( cos 336 + i sin 336 ) Ans.
Answer:
audrey_111506
Step-by-step explanation:
Rewriting the equation as a quadratic equation equal to zero:
x^2 - x - 30 = 0
We need two numbers whose sum is -1 and whose product is -30. In this case, it would have to be 5 and -6. Therefore we can also write our equation in the factored form
(x + 5)(x - 6) = 0
Now we have a product of two expressions that is equal to zero, which means any x value that makes either (x + 5) or (x - 6) zero will make their product zero.
x + 5 = 0 => x = -5
x - 6 = 0 => x = 6
Therefore, our solutions are x = -5 and x = 6.
Answer:
hii friends are you also follow me and give me brainliest ok
and so sorry I don't no answer
but you follow me and give me brainliest ok by