Answer:
the terminal velocity of 14 nested coffee filters is 3.2 m/s
Explanation:
Given the data in the question;
we know that;
The terminal velocity is proportional to the square root of weight.
v ∝ √W
v = k√W
the proportionality constant depends upon the surface area and the density of the medium (like air). The coffee filters can be stacked such that the resulting area is roughly unchanged. So, the constant of proportionality k is also unchanged
v/√W = constant
v₂/√W₂ = v₁/√W₁
v₂ = v₁√(W₂ / W₁ )
given that;
v₁ = 0.856 m/s,
W₂ = 14W₁; meaning 14 coffee filters have 14 times the weight of a single coffee filter
so we substitute
v₂ = 0.856 √(14W₁ / W₁ )
v₂ = 0.856 √( 14( W₁/W₁)
v₂ = 0.856 √( 14(1)
v₂ = 0.856 √( 14 )
v₂ = 0.856 × 3.741657
v₂ = 3.2 m/s
Therefore, the terminal velocity of 14 nested coffee filters is 3.2 m/s
A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

According to law of conservation of mass within a reaction,
The mass of the compound formed is (23+35.5) grams means 58.5 grams of sodium chloride[NaCl] will be formed.
When a liquid changes to gas, this phase change is called vaporization or evaporization.
Question 18: a
question 19: b
question 20: c