200x 9, nine times two hundred,
Answer:
1.7636981 = 1.7
Step-by-step explanation:
Hope it helps :)
pls mark brainliest :P
Answer:

Step-by-step explanation:
we know that
In this problem we have a exponential function of the form

where
x ----> is the number of years since 2009
y ----> is the population of bears
a ----> is the initial value
b ---> is the base
step 1
Find the value of a
For x=0 (year 2009)
y=1,570 bears
substitute


so

step 2
Find the value of b
For x=1 (year 2010)
y=1,884 bears
substitute



The exponential function is equal to

step 3
How many bears will there be in 2018?
2018-2009=9 years
so
For x=9 years
substitute in the equation


To find the inverse, we swap the variables y and x, then solve for the new y.
3a.

Swapping the variables:

Solving for y:

The domain of this inverse is

.
3b.

Swapping:

Solving for y:

The domain of this inverse is

.
3c.
![y=\sqrt[3]{\frac{x-7}{3}}](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7B%5Cfrac%7Bx-7%7D%7B3%7D%7D)
Swapping:
![x=\sqrt[3]{\frac{y-7}{3}}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B%5Cfrac%7By-7%7D%7B3%7D%7D)
Solving for y:

The domain of this inverse is all real numbers.
4a.

,


4c.
![y=\sqrt[3]{\frac{x-7}{3}}](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7B%5Cfrac%7Bx-7%7D%7B3%7D%7D)
,

![y=\sqrt[3]{\frac{(3x^3+7)-7}{3}} \\ y=\sqrt[3]{\frac{3x^3}{3}} \\ y=\sqrt[3]{x^3} \\ y=x](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%283x%5E3%2B7%29-7%7D%7B3%7D%7D%20%5C%5C%20y%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3x%5E3%7D%7B3%7D%7D%20%5C%5C%20y%3D%5Csqrt%5B3%5D%7Bx%5E3%7D%20%5C%5C%20y%3Dx)
Answer:
sin 35* x/6550
hypotenuse is 6550
35* left to the right angle
x above right angle
Step-by-step explanation:
Got lucky