Answer:
You need to put the diagrams. repost and include the diagrams
Answer:
Explanation:
i )
In a conservative field like gravitational field , loss of potential energy or work done , depends upon the initial and final point and not the manner in which 2 nd point has been reached . Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
Hence , due to increased mass of larger child , his kinetic energy will be greater .
ii ) Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
iii ) Smaller child undergo free fall , therefore , he will fall with acceleration g . The larger child falls on curved path . So , he will have only a component of
vertical g at any moment . hence average acceleration will be less.
Since acceleration is measured in whole seconds, you need to know how many times 0.157seconds goes into 1 second... (just divide 1 by 0.157) = 6.369
So if in 0.157seconds the baseball went from zero to 38m/s, then to find out how fast it would be traveling after one whole second just multiply 38m/s by 6.369
38m/s x 6.369 = 242.038 m/s^2
Answer:
RMS voltage is 113.1370 V
frequency is 780.685 Hz
voltage is −158.66942 V
maximum current is 2.9739 A
Explanation:
Given data
∆V = 160.0 sin(495t) Volts
so Vmax = 160
and angular frequency = 495
time t = 1/106 s
resistor R = 53.8 Ω
to find out
RMS voltage and frequency of the source and voltage and maximum current
solution
we know voltage equation = Vmax sin ωt
here Vmax is 160 as given equation in question
so RMS will be Vmax / √2
RMS voltage = 160/ √2
RMS voltage is 113.1370 V
and frequency = angular frequency / 2π
so frequency = 497 / 2π
frequency is 780.685 Hz
voltage at time (1/106) s
V(t) = 160.0 sin(495/ 108)
voltage = −158.66942 V
so current from ohm law at resistor R 53.8 Ω
maximum current = voltage max / resistor
maximum current = 160 / 53.8
maximum current = 2.9739 A
The image is present at 20cm from the crown glass spherical surface.
To find the answer, we need to know about the lens formula.
<h3>
What's the lens formula?</h3>
- It's (1/V)-(1/U)= (1/f)
- V= image distance from the lens, U= object distance, f= focal length of the lens
<h3>What's the image distance, if object is present at 20cm from crown glass of power 10DS?</h3>
- Focal length (f)= 1/ power = 1/10 = 0.1 m
- U= -20cm = -0.2m (-ve sign due to sign convection)
- (1/V)-(-1/0.2)= (1/0.1)
=> (1/V)+5=10
=> 1/V= 5
=> V=0.2m = 20cm
Thus, we can conclude that the image is present at 20cm.
Learn more about the lens formula here:
brainly.com/question/2098689
#SPJ1