My calculations state, not rounding, the mass is 1.8
Power = Work done/Time taken
So, keeping this in mind,we can solve it as follows:
= 700/3.1
= 7000/31
= 225.80 W
Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
Answer:
Filtration is a method for separating an insoluble solid from a liquid. When a mixture of sand and water is filtered: the sand stays behind in the filter paper (it becomes the residue ) the water passes through the filter paper (it becomes the filtrate )
Explanation:
Listo!
Answer:
The quantity of electrons that flows past a given point is 3.0 C.
Explanation:
An electric current (I) is the ratio of the quantity of charges (Q) that flows through a point to the time taken (t).
i.e I = 
It is measured in Ampere's by the use of an ammeter in the laboratory. The quantity of charge that flow through a given point is measured in Coulombs, while time is measured in seconds.
Given that; I = 1.5A and t = 2s, find Q.
Q = It
= 1.5 × 2
= 3.0 C
The quantity of electrons that flows past a given point is 3.0 C.