Answer:
Most solids in solution exhibit a general trend of increasing solubility with increasing temperature.
A seed crystal may be added to a supersaturated solution to precipitate excess solute.
Explanation:
For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions(Lumen Learning).
When a seed crystal is added to a supersaturated solution, excess solute begin to precipitate because the seed crystal now furnishes the required nucleation site where the excess dissolved crystals now begin to grow.
Explanation:
Relation between entropy change and specific heat is as follows.

The given data is as follows.
mass = 500 g,
= 24.4 J/mol K
= 500 K,
= 250 K
Mass number of copper = 63.54 g /mol
Number of moles = 
= 
= 7.86 moles
Now, equating the entropy change for both the substances as follows.
= ![7.86 \times 24.4 \times [500 -T_{f}]](https://tex.z-dn.net/?f=7.86%20%5Ctimes%2024.4%20%5Ctimes%20%5B500%20-T_%7Bf%7D%5D)

= 750
So,
= 
- For the metal block A, change in entropy is as follows.

= ![24.4 log [\frac{375}{500}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B500%7D%5D)
= -3.04 J/ K mol
- For the block B, change in entropy is as follows.

= ![24.4 log [\frac{375}{250}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B250%7D%5D)
= 4.296 J/Kmol
And, total entropy change will be as follows.
= 4.296 + (-3.04)
= 1.256 J/Kmol
Thus, we can conclude that change in entropy of block A is -3.04 J/ K mol and change in entropy of block B is 4.296 J/Kmol.
On the first graph the beginning flat line is the reaction. Then comes the hill will it be call the activation energy. The final flat line would be the produce. Same names apply to the 2 graph too
Answer:- A) 1 mole of Fe and 1.5 moles of
.
Solution:- The balanced equation is:

From balanced equation, there is 1:3 mol ratio between
and CO, From given data, 3 moles of
and 1.5 moles of CO are taken for the reaction. CO is the limiting reactant as it's moles are less than the other reactant and which is also clear from the mole ratio. We could do the calculations also to support this. Let's calculate the moles of CO required to react completely with given 3 moles of
.

= 9 mol CO
So, from calculations, 9 moles of CO are required to react completely with 3 moles of Iron(III)oxide but only 1.5 moles of CO are available. Hence, CO is the limiting reactant and the product moles are calculated from this as:

= 1 mol Fe

= 1.5 mol 
So, the correct choice is A) 1 mole of Fe and 1.5 moles of
.
This is an amide on the aromatic ring.