Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
Answer:
Base Mg(OH)2 does neutralise the acid and is 12g in excess.
Explanation:
2HCL +Mg(OH)2 -> MgCl2 + 2H20
2 * 36.458 g of HCL react with 58.319 g of Mg(OH)2 to neutralise it.
72.916 HCl reacts with 58.319 g of the base.
So 20 g HCl reacts with (58.319/72.916) * 20 = 16g.
There are 28 g of Mg(OH)2 so the base does neutralise all the acid.
The Mg(OH)2 is 28 - 16 = 12 g in excess.
If the spoons touch, no heat will flow among the spoons because they are already in thermal equilibrium with each other. This is hinted by the statement "they are at room temperature" which means they all have the same temperature. Heat only flows when there is a difference in temperature.<span>
The answer will be </span><span>C. No heat will flow among the spoons
</span><span>
®PLEASE MARK AS BRAINLIEST TO HELP ME LEVEL UP®</span>
Answer:

Explanation:
The molecular formula of the monohydrate formed = 
The molecular mass of the monohydrate formed = 
So, Mass = 24 + 14 + 6 × 1 + 5 × 16 = 155 g
Mass of phosphorus = 31 g
Thus,

I. Lowering the temperature would decrease the rate of the reaction.