1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
14

Lydia's mom earns $4 in rewards for every $75 she spends at the grocery store. If she earned $44 in rewards last month, how much

did she spend at the store?
Mathematics
1 answer:
8_murik_8 [283]3 years ago
6 0

Answer:

$495

Step-by-step explanation:

Take baseline amount of 75 dollars and divide it by 4. This will get you to the answer 11.25. Use 11.25 and multiply it by what she received in rewards. 11.25 times 44 equals....495!

You might be interested in
Which equation describes a function that is NOT linear?
natka813 [3]

Answer:

Step-by-step explanation:

it’s the third one

5 0
3 years ago
an aircraft carrier made a trip to Guam and back. the trip there to three hours and the trip back took four hours. it averaged 6
Leto [7]
The wallet was y’all doin was a good night I gotta have to be back in the time of my time with you again and daddy mommy daddy and daddy daddy and mommy daddy mommy mommy daddy and daddy mommy mommy and yyyyy
4 0
3 years ago
Convert 4800 inches to feet
Mars2501 [29]
4800in.=400ft.
I hope this will help
6 0
3 years ago
Read 2 more answers
Hello there
Amanda [17]

Answer:

210cm cubed

Step-by-step explanation:

Width x length x height

3x7x10

8 0
3 years ago
Read 2 more answers
Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:
Stella [2.4K]
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}
{|c|c|c|c|}
Month&Price per Chip&Month&Price per Chip\\[1ex]
January&\$1.90&July&\$1.80\\
February&\$1.61&August&\$1.83\\
March&\$1.60&September&\$1.60\\
April&\$1.85&October&\$1.57\\
May&\$1.90&November&\$1.62\\
June&\$1.95&December&\$1.75
\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
5 0
3 years ago
Other questions:
  • Solve equation using the algebraic 7.4p-9.2= -2.6+5.3
    10·2 answers
  • you let me do the following triangle. She is transformed using a reflection which could be coordinates of dog after the reflecti
    13·1 answer
  • I will give points to those who send me friend requests
    7·2 answers
  • Can you explain to me (detailed) on how to do this problem? I will give you a brainly if you get this right.
    10·1 answer
  • What is the number 345000 in Word form
    5·1 answer
  • Slope is equal to rise divided by one. If you know the horizontal distance (run) in the slope, how can you find the vertical dis
    14·1 answer
  • How is it 86 I neeeed Explainatiob pleaseeee!!!!!
    5·1 answer
  • I don’t understand the question pls help
    12·1 answer
  • 5x + 2y = 7<br> 7x + 6y = -3<br> Please solve using elimination method.
    14·1 answer
  • Help ill mark brainliest
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!