Rutherford's experiment was done to prove Thompson's Plum Pudding Model. In this model, the protons and electrons are both inside the nucleus. The atoms is neutral because the charges cancel out. Rutherford's hypothesis was that, when a beam of cathode rays hits the gold foil, all the light should pass through. If the Plum Pudding model was correct, that would have been the result. However, it wasn't.
Answer:
<u>Metalloid -</u>
A metalloid is a chemical element with properties intermediate between those of typical metals and nonmetals
<u>Alloy</u> -
An alloy is a mixture of metals or a mixture of a metal and another element. Alloys are defined by a metallic bonding character.
1)we need a balanced equation: CuSO₄ + Zn ---> ZnSO₄ + Cu
2) we need to convert the grams of CuSO₄ to moles using the molar mass.
molar mass CuSO₄= 63.5 + 32.0 + (4 x 16.0)= 160 g/mol

3) convert moles of CuSO₄ to moles of Cu

4) convert moles of Cu to grams using it's molar mass.
molar mass Cu= 63.5 g/mol

I did it step-by-step as the explanation but you can do all of this in one step.
Actual question from source:-
A 3.96x10-4 M solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000 cm cuvette. A blank had an absorbance of 0.029. The absorbance of an unknown solution of compound A was 0.375. Find the concentration of A in the unknown.
Answer:
Molar absorptivity of compound A = 
Explanation:
According to the Lambert's Beer law:-
Where, A is the absorbance
l is the path length
is the molar absorptivity
c is the concentration.
Given that:-
c = 
Path length = 1.000 cm
Absorbance observed = 0.624
Absorbance blank = 0.029
A = 0.624 - 0.029 = 0.595
So, applying the values in the Lambert Beer's law as shown below:-

<u>Molar absorptivity of compound A =
</u>