Answer:
In the presence of UV light, ethane will react with bromine in a substitution reaction. UV light is the condition under which the reaction will occur so it is written above the arrow in the chemical equation. As the reaction proceeds, the intensity of the re-brown colour of the bromine water decreases.
Answer:
2.41065 grams
Explanation:
Here we have to apply molarity, particularly in reference to the equation molarity = moles of solute / volume. I would like to rewrite this formula, but with respect to the units - grams = moles / Liters,
We can use molarity to determine the number of moles. After doing so, we can determine the mass of the solute with respect to the formula moles = mass / molar mass. The molar mass of NaCl is 58.44 grams.
_______________________________________________________
275 mL = 0.275 L,
Number of Moles of NaCl = 0.150 * 0.275 = 0.04125 moles,
Mass = 0.04125 * 58.44 = 2.41065 grams,
Solution - Mass of NaCl = 2.41065 grams
<u><em>Hope that helps!</em></u>
Answer:- Atomic number for sulfur is 16 and it's electron configuration is
. Here, there are total for electrons in 3p and the set of quantum numbers for these 4 electrons would be as..
For the first electron of 3p-
n = 3, l = 1, ml = -1 and ms = +(1/2)
for the second electron of 3p-
n = 3, l = 1, ml = 0 and ms = +(1/2)
for the third electron of 3p-
n = 3, l = 1, ml = +1 and ms = +(1/2)
and for the fourth electron of 3p-
n = 3, l = 1, ml = -1 and ms = -(1/2)
Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter