Answer:
It helps us develop our obervation skills and we learn what the egg looks like. We can learn the nutritional values of the egg.
Explanation:
Hope that helped
<h3>
Answer:</h3>
2.47 × 10^24 molecules
<h3>
Explanation:</h3>
One mole of a compound contains molecules equivalent to the Avogadro's number, 6.022 × 10^23.
That is, 1 mole of a compound = 6.022 × 10^23 molecules
Therefore,
1 mole of Na₂CO₃ = 6.022 × 10^23 molecules
Thus, we can calculate the number of molecules in 4.1 moles of Na₂CO₃
we get,
= 4.1 moles × 6.022 × 10^23 molecules
= 2.47 × 10^24 molecules
Hence, 4.1 moles of Na₂CO₃ contains 2.47 × 10^24 molecules
Answer:
The minimum amount of energy needed the the cell to perform various cellular,biochemical and physiological activities is known is Gibbs free energy.
Explanation:
The change in gibbs free energy of is very much important to determine whether a given reaction is spontaneous,non spontaneous or equilibrium.
1 If gibbs free energy change of a reaction is negative then the reaction is spontaneous.
2 If the free energy change is 0 then the reaction is in equilibrium stage.
3 If free energy change is positive then the reaction is non spontaneous.
Answer:
D = 28.2g
Explanation:
Initial temperature of metal (T1) = 155°C
Initial Temperature of calorimeter (T2) = 18.7°C
Final temperature of solution (T3) = 26.4°C
Specific heat capacity of water (C2) = 4.184J/g°C
Specific heat capacity of metal (C1) = 0.444J/g°C
Volume of water = 50.0mL
Assuming no heat loss
Heat energy lost by metal = heat energy gain by water + calorimeter
Heat energy (Q) = MC∇T
M = mass
C = specific heat capacity
∇T = change in temperature
Mass of metal = M1
Mass of water = M2
Density = mass / volume
Mass = density * volume
Density of water = 1g/mL
Mass(M2) = 1 * 50
Mass = 50g
Heat loss by the metal = heat gain by water + calorimeter
M1C1(T1 - T3) = M2C2(T3 - T2)
M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)
0.444M1 * 128.6 = 209.2 * 7.7
57.0984M1 = 1610.84
M1 = 1610.84 / 57.0984
M1 = 28.21g
The mass of the metal is 28.21g