1 mile=5280 feet how about 52800
1 x 52800 divided by 5280=10 miles
Answer:
7. r = -5
8. x = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
r + 2 - 8r = -3 - 8r
<u>Step 2: Solve for </u><em><u>r</u></em>
- Combine like terms: -7r + 2 = -3 - 8r
- Add 8r to both sides: r + 2 = -3
- Subtract 2 on both sides: r = -5
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>: -5 + 2 - 8(-5) = -3 - 8(-5)
- Multiply: -5 + 2 + 40 = -3 + 40
- Add: -3 + 40 = -3 + 40
- Add: 37 = 37
Here we see that 37 does indeed equal 37.
∴ r = -5 is a solution of the equation.
<u>Step 4: Define equation</u>
-4x = x + 5
<u>Step 5: Solve for </u><em><u>x</u></em>
- Subtract <em>x</em> on both sides: -5x = 5
- Divide -5 on both sides: x = -1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: -4(-1) = -1 + 5
- Multiply: 4 = -1 + 5
- Add: 4 = 4
Here we see that 4 does indeed equal 4.
∴ x = -1 is a solution of the equation.
The 5 and 10 min cross. 10
<span>The 5 min returns. 15 </span>
<span>The 20 and 25 min cross 40 </span>
<span>The 10 min comes back 50 </span>
<span>The 5 and 10 min cross again in60 Mins</span>
Answer:
PV= $3,402.9
Step-by-step explanation:
Giving the following formula:
Future Vale (FV)= $5,000
Number of years (n) 5 years
Interest rate (i)= 8.5% compounded annually
<u>To calculate the initial investment (PV), we need to use the following formula:</u>
PV= FV / (1 + i)^n
PV= 5,000 / (1.085^5)
PV= $3,402.9
A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
<span>A) an equilateral triangle</span>