Answer:
0.0918
Step-by-step explanation:
We know that the average amount of money spent on entertainment is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The mean and standard deviation of average spending of sample size 25 are
μxbar=μ=95.25
σxbar=σ/√n=27.32/√25=27.32/5=5.464.
So, the average spending of a sample of 25 randomly-selected professors is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The z-score associated with average spending $102.5
Z=[Xbar-μxbar]/σxbar
Z=[102.5-95.25]/5.464
Z=7.25/5.464
Z=1.3269=1.33
We have to find P(Xbar>102.5).
P(Xbar>102.5)=P(Z>1.33)
P(Xbar>102.5)=P(0<Z<∞)-P(0<Z<1.33)
P(Xbar>102.5)=0.5-0.4082
P(Xbar>102.5)=0.0918.
Thus, the probability that the average spending of a sample of 25 randomly-selected professors will exceed $102.5 is 0.0918.
Answer:
9.5 < x < 15
Step-by-step explanation:
162 is not a perfect square therefore you have to find the largest perfect square that can go into 162 which would be 81.
What exactly are you trying to find but I tried to do the problem and I got 3
Area=lw
l=2w
aera=2l^2
72=area
72=2l^2
divide both sides by 2
36=l^2
sqrt both sides
6=l
length=6 units