Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!
Method 1: gravimetry
advantages: Impurities in the sample can be identified
disadvantages: The process is long, because it goes through several stages
Method 2: titration
advantages: the process is fast, because the titrate and titrant react immediately
disadvantages: Sometimes the determination of the end point of the titration is carried out too fast or too slowly so that the calculations carried out are inaccurate
<h2>Answer:</h2>
Option D is correct. It is independent of the reaction pathway.
<h2>Explanations:</h2><h2>What is Hess's law?</h2>
Hesslaw states that the enthalpy change of a reaction does not change regardless whether the reaction takes place in a single or multiple reaction pathways.
This shows that the total entalpy change of a reaction does not depend on the reaction pathway.
Answer: The initial temperature of the iron was 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of iron = 360 g
= mass of water = 750 g
= final temperature = 
= temperature of iron = ?
= temperature of water = 
= specific heat of iron = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![-360\times 0.450\times (46.7-x)=[750\times 4.184\times (46.7-22.5)]](https://tex.z-dn.net/?f=-360%5Ctimes%200.450%5Ctimes%20%2846.7-x%29%3D%5B750%5Ctimes%204.184%5Ctimes%20%2846.7-22.5%29%5D)

Therefore, the initial temperature of the iron was 