Answer:
Mass, temperature, and phase.
I think temperature because the higher the temperature of a given quantity of a substance, more is its thermal energy. Similarly, for the same temperature, higher mass of a substance will contain more thermal energy.
The complete question is as follows: How many moles of a gas at 100 c does it take to fill a 1.00 l flask to a pressure of 152kPa
Answer: There are 0.0489 moles of a gas at
is required to fill a 1.00 l flask to a pressure of 152kPa.
Explanation:
Given: Volume = 1.00 L,
Pressure = 152 kPa (1 kPa = 1000 Pa) = 152000 Pa
Convert Pa into atm as follows.

Temperature = 
Using the ideal gas formula as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 0.0489 moles of a gas at
is required to fill a 1.00 l flask to a pressure of 152kPa.
659. 48 g of water is produced
Answer: The number of N atoms in 137.0 g of N2O3 21.67 x 10∧23 atoms.
Explanation:
- We must obtain the number of moles of the compound: (n = mass/molar mass), mass = 137.0 g and molar mass of N2O3 = 76.01 g/mol.
- n = (137.0 g)/ (76.01 g/mol) = 1.80 mol.
- It is necessary to determine the number of molecules of this sample.
- Every mole contains Avagadro's number (6.02 x 10^23) of molecules.
- The number of molecules = (6.02 x 10^23)(1.80) = 10.84 x 10∧23 molecules.
- Every molecule of N2O3 contain 2 atoms of N.
- The number of N atoms in 137.0 g of N2O3 = (10.84 x 10∧23 molecule) (2 atoms) = 21.67 x 10∧23 atoms.
Explanation:
a 1 ( only "s"
b 2 ( "s" ,"p" )
c 3 ( "s" , "p" , "d")
d 4 ( "s", "p" , "d", "f")
e 5 ( "s", "p", "d", "f", "g")
f 6 ( "s", "p", "d", "f", "g", "h" )