Answer:
B
Explanation:
The carbon-oxygen double bond is polar.
However, carbon dioxide is a linear molecule. The two dipoles cancel out each other.
Thus, carbon dioxide is a non polar molecule with polar bond.
No it do not but it uses gravity and falls fast So. The surface do not affect how fast objects fall. Hope this helps:)
<u>Answer:</u> The activation energy for the reaction is 40.143 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation for two different temperatures, which is:
![\ln(\frac{K_{317K}}{K_{278K}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B317K%7D%7D%7BK_%7B278K%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 317 K = 
= equilibrium constant at 278 K = 
= Activation energy = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = 278 K
= final temperature = 317 K
Putting values in above equation, we get:
![\ln(\frac{3.050\times 10^8}{3.600\times 10^{7}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{278}-\frac{1}{317}]\\\\E_a=40143.3J/mol=40.143kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B3.050%5Ctimes%2010%5E8%7D%7B3.600%5Ctimes%2010%5E%7B7%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B278%7D-%5Cfrac%7B1%7D%7B317%7D%5D%5C%5C%5C%5CE_a%3D40143.3J%2Fmol%3D40.143kJ%2Fmol)
Hence, the activation energy for the reaction is 40.143 kJ/mol
Answer:
We deduce that the correct option is option c: critical period
Explanation:
Hello!
Let's solve this!
The imprint is the learning that occurs in early ages, the example of the duckling is used, which follows anyone in early periods.
This is called the critical period.
We deduce that the correct option is option c: critical period
Wood because it doesn't belong there