Answer:
C. 30 kJ
Explanation:
Hello there!
In this case, in agreement to the thermodynamic definition of the Gibbs free energy, in terms of enthalpy of entropy:

It is possible to calculate the required G by plugging in the given entropy and enthalpy as shown below:

Therefore, the answer is C. 30 kJ
.
Best regards!
This is a one-step unit analysis problem. Since we are staying in moles, grams of our compound, and thus molar mass, is not needed.
1 mole is equal to 6.022x10²³ particles as given, so:

<h3>
Answer:</h3>
2.49 mol
Let me know if you have any questions.
<span>Fe(NO3)2
The NO3 part is a poly-atomic ion with total charge -1.
This is because Fe has a +2 charge and two NO3's with a -1 charge will balance out to 0.
Most often we just make the assumption that Oxygen has a -2 oxidation number because it is very electro-negative.
So to find N, we just need an oxidation number that balances out with 3(-2) to get -1 (the total charge of the ion)</span>
The arrows represent the movement of starting substances
Answer:
THE NEW VOLUME OF THE GAS IS 406 mL WHEN THE TEMPERATURE CHANGES FROM 765 K TO 315 K.
Explanation:
When the temperature changes from 765 K to 315K, the volume has changed from 986 mL to?
V1 = 986 mL = 0.986 L
T1 = 765 K
T2 = 315 K
V2 = unknown
Using Charles' equation of gas laws;
V1 / T1 = V2 / T2
Making V2 the subject of the formula:
V2 = V1 T2 / T1
V2 = 0.986 * 315 / 765
V2 = 0.406 L
V2 = 406 mL
So therefore, the volume of a gas changes from 986 mL to 406 mL as a result of a change in temperature from 765 K to 315 K.