How many grams of glucose is dissolved in 2.88% glucose solution if 1944 grams of water is used???? The answer is C. 56 grams
Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
The number of hours required : 37.2 hours
<h3>Further explanation</h3>
Given
⁴²K (potassium -42)
Required
The number of hours
Solution
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
Based on Table N(attached), the half-life for ⁴²K is 12.4 hours, which means half of a sample of ⁴²K will decay in 12.4 hours
For three half-life periods :


Here we go ~
1 mole of
has 6.022 × 10²³ molecules of the given compound.
So, 0.78 mole of
will have ~


Answer:
The molar mass of
is 96.8 g/mol
Explanation:
The given molecular formula - 
Individual molar masses of each element in the compound is as follows.
Molar mass of nitrogen - 14.01 g/mol
Molar mass of of hydrogen = 1.008g/mol
Molar mass of carbon = 12.01 g/mol
Molar mass of oxygen =16.00 g/mol
Molar mass of
is
![2\times[1(14.01)+4(1.008)]+1(12.01)+3(16.00)= 96.8g/mol](https://tex.z-dn.net/?f=2%5Ctimes%5B1%2814.01%29%2B4%281.008%29%5D%2B1%2812.01%29%2B3%2816.00%29%3D%2096.8g%2Fmol)
Therefore,The molar mass of
is 96.8 g/mol