I would say none because thats the only one that makes any sence.
The question is incomplete, here is the complete question.
A chemist prepares a solution of copper(II) fluoride by measuring out 0.0498 g of copper(II) fluoride into a 100.0mL volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's copper(II) fluoride solution. Round your answer to 3 significant digits.
<u>Answer:</u> The concentration of copper fluoride in the solution is 
<u>Explanation:</u>
To calculate the molarity of solute, we use the equation:

We are given:
Given mass of copper (II) fluoride = 0.0498 g
Molar mass of copper (II) fluoride = 101.54 g/mol
Volume of solution = 100.0 mL
Putting values in above equation, we get:

Hence, the concentration of copper fluoride in the solution is 
Answer:
Reactive and lose 1 electron
Explanation:
I think you should study!
It won’t be hard if you study.
You need to focus!
If you still study n
And failed it’s okay…
I understand that some people are good at school
And some aren’t… they have there own dream.
The answer is dipole-dipole and dipole-induced dipole forces.
The dipole-induced dipole is a kind of interaction induced by a polar molecule by disturbing the arrangement of electrons.
- In methyl cyclohexanone molecules, there is a permanent dipole moment due to dipole moment vectors not canceling.
- There is induction of dipole by disturbing the electronic arrangement.
- A permanent dipole moment is created in this interaction.
- Dipole-dipole interactions are defined as the forces that is formed from the close linkage of permanent or induced dipoles.
- These forces are called Van der Waal forces.
- Proteins contain a large number of these interactions, which vary considerably in strength.
To learn more about dipole-dipole interactions visit:
brainly.com/question/14173758
#SPJ4