Answer:
Vx= 11.0865(m/s)
Vy= 6.4008(m/s)
Explanation:
Taking into account that 1m is equal to 0.3048 ft, the takeoff speed in m / s will be:
V= 42(ft/s) × 0.3048(m/ft) = 12.8016(m/s)
The take-off angle is equal to 30 °, taking into account the Pythagorean theorem the velocity on the X axis will be:
Vx= 12.8016 (m/s) × cos(30°)= 11.0865(m/s)
And for the same theorem the speed on the Y axis will be:
Vy= 12.8016 (m/s) × sen(30°)= 6.4008(m/s)
Answer:
Initial velocity describes how fast an object travels when gravity first applies force on the object. On the other hand, the final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration.
Explanation:
<span> d = r*t is the basic distance equation
d = 6000 km
t with the tail wind = 6 hr
r with the tail wind = speed of the plane + wind speed = s + w
t with the head wind = 7.5 hr
r with the head wind = speed of the plane - wind speed = s-w
(s+w)*6 = 6000
(s-w)*7.5 = 6000
s + w = 1000
s - w = 800
</span><span> 2s = 1800
s = 900 km/h
s + w = 1000
w = 100
Check the anwer by calculating the return trip.
(900-100) * 7.5 = 800 * 7.5
800 * 7.5 = 6000 km
Answer: The rate of the jet in still air is 900 km/h. The rate of the wind is 100 km/hr.</span>
I’m imagining imagining imagining an imagination...
The speed of car is 100.8km/h









v car= 28×3.6
=100.8km/h
Hence, the speed of the car is 100.8km/h
learn more about speed from here:
brainly.com/question/28326855
#SPJ4