The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
The entire electromagnetic spectrum, from the lowest to the highest frequency (longest to shortest wavelength), includes all radio waves (e.g., commercial radio and television, microwaves, radar), infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.
False, There is other things aswell
For a constant-velocity object, the average and instantaneous are the same. So the answer is no. It's like taking a running average of a string of numbers that are all the same number. The average is always the sum of the numbers divided by how many have accumulated, which will always equate to the repeated number.
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2