Answer:
10 ft to nearest foot.
Step-by-step explanation:
We use the Pythagoras theorem:
12^2 = 6^2 + h^2 where h is the height on the barn
h^2 = 12^2 - 6^2
h^2 = 144 - 36 = 102
h= √108 = 10.39
Answer:
208
Step-by-step explanation:
Given that;
Given that;
y= a(1 - b)^t
Where;
wherein y is the final amount, a is the original amount, b is the decay factor, and x is the amount of time that has passed.
To obtain the constant b,
y= ae^-bt
Substituting values;
1000 = 3000 e^-b(50)
1000/3000 = e^b(50)
0.33 = e^b-(50)
ln (0.33) = ln(e^b(-50))
-1.1 = -50b
b= 1.1/50
b= 0.022
After two hours or 120 minutes;
y= 3000(1 - 0.022)^120
y= 207.8661772
y= 208
Answer:
The initial mass of the sample was 16 mg.
The mass after 5 weeks will be about 0.0372 mg.
Step-by-step explanation:
We can write an exponential function to model the situation.
Let the initial amount be A. The standard exponential function is given by:

Where r is the rate of growth/decay.
Since the half-life of Palladium-100 is four days, r = 1/2. We will also substitute t/4 for t to to represent one cycle every four days. Therefore:

After 12 days, a sample of Palladium-100 has been reduced to a mass of two milligrams.
Therefore, when x = 12, P(x) = 2. By substitution:

Solve for A. Simplify:

Simplify:

Thus, the initial mass of the sample was:

5 weeks is equivalent to 35 days. Therefore, we can find P(35):

About 0.0372 mg will be left of the original 16 mg sample after 5 weeks.
Well, we dont know because we cant see the barmodels
Given, (0,−2).
Since the x-coordinate is 0, the point clearly lies on y-axis.
Also, the y-coordinate −2 being negative, the point lies on the negative y-axis.