We are asked to find the value of ΔG°rxn from the equilibrium concentrations of the reactants and products. We can use the following formula:
ΔG°rxn = -RTlnK
The value of R = 8.314 J/Kmol, T = 298.15 K and we are given the equilibrium constant Keq = 2.82.
The question provides equilibrium concentrations and then asks to find ΔG°rxn when more of a product is added to the reaction mixture. However, you are asked to find ΔG after the reaction has settled down and reached equilibrium once more. Therefore, we can simply use Keq = 2.82 still and solve for ΔG.
ΔG°rxn = -(8.314 J/Kmol)(298.15 K)(ln(2.82))
ΔG°rxn = -2570 J/mol
ΔG°rxn = -2.57 kJ/mol
Under equilibrium conditions at standard temperature and pressures, the value of ΔG°rxn = -2.57 kJ/mol.
Answer:
Depends on what are you refering to
Explanation:
So depending on what you are looking for (your question is quite vauge)
there are 5 atoms of the comopound (K2CO3)
within that compound, there are 2 atoms of Potassium and 1 atom of Carbonate. Within Carbonate there are 4 atoms (1 carbon and 3 oxygens)
so answers may be
5, 15, or 25.
I hope this helps.
The answer will be bar graph
Two non metal combined together and form the bond is called covalent bond
Note - yellow color molecules in pictures are non metal elements
example - co2 , so2,