Explanation:
It is given that,
The electron in a hydrogen atom, originally in level n = 8, undergoes a transition to a lower level by emitting a photon of wavelength 3745 nm. It means that,


The amount of energy change during the transition is given by :
![\Delta E=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}]](https://tex.z-dn.net/?f=%5CDelta%20E%3DR_H%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7Bn_i%5E2%7D%5D)
And
![\dfrac{hc}{\lambda}=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}]](https://tex.z-dn.net/?f=%5Cdfrac%7Bhc%7D%7B%5Clambda%7D%3DR_H%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7Bn_i%5E2%7D%5D)
Plugging all the values we get :
![\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{3745\times 10^{-9}}=2.179\times 10^{-18}[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\\dfrac{5.31\times 10^{-20}}{2.179\times 10^{-18}}=[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\0.0243=[\dfrac{1}{n_f^2}-\dfrac{1}{64}]\\\\0.0243+\dfrac{1}{64}=\dfrac{1}{n_f^2}\\\\0.039925=\dfrac{1}{n_f^2}\\\\n_f^2=25\\\\n_f=5](https://tex.z-dn.net/?f=%5Cdfrac%7B6.63%5Ctimes%2010%5E%7B-34%7D%5Ctimes%203%5Ctimes%2010%5E8%7D%7B3745%5Ctimes%2010%5E%7B-9%7D%7D%3D2.179%5Ctimes%2010%5E%7B-18%7D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B8%5E2%7D%5D%5C%5C%5C%5C%5Cdfrac%7B5.31%5Ctimes%2010%5E%7B-20%7D%7D%7B2.179%5Ctimes%2010%5E%7B-18%7D%7D%3D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B8%5E2%7D%5D%5C%5C%5C%5C0.0243%3D%5B%5Cdfrac%7B1%7D%7Bn_f%5E2%7D-%5Cdfrac%7B1%7D%7B64%7D%5D%5C%5C%5C%5C0.0243%2B%5Cdfrac%7B1%7D%7B64%7D%3D%5Cdfrac%7B1%7D%7Bn_f%5E2%7D%5C%5C%5C%5C0.039925%3D%5Cdfrac%7B1%7D%7Bn_f%5E2%7D%5C%5C%5C%5Cn_f%5E2%3D25%5C%5C%5C%5Cn_f%3D5)
So, the final level of the electron is 5.
NH3 + H2O -> NH4+ + OH- is the answer I think I just did this in class today
3.11 i'm not sure about measurements maybe like 3.11kg/cm^3
Answer:
K, the rate constant = 9.73 × 10^(-1)/s
Explanation:
r = K × [A]^x × [B]^y
r = Rate = 1.07 × 10^(-1)/s
K = Rate constant
A and B = Concentration in mol/dm^-3
A = 0.44M
B = 0.11M
x = Order of reaction with respect to A = 0
y = Order of reaction with respect to B = 1
Solving, we get
r/([A]^x × [B]^y) = K
K = 1.07 × 10^(-1)/s/(0.44^0 × 0.11^1)= 0.9727
K = 0.9727
In is a lot easier because it uses 10s.