Roughly 1609 meters in one mile
The correct answer is:
<span>Become positively or negatively charged
In fact, an insulator is a material where charges cannot move freely. Therefore, it can be positively or negatively charge (for example, if it is rubbed against another object, the insulator can remain with an excess of charge), but it cannot transfer charge to other objects.</span>
Answer
Given,
Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.
refractive index of water, n_a = 1.33
refractive index of glass, n_g = 1.52
When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.
Answer:
171.5 N
Explanation:
The gravitational force on an object due to the Earth is given by

where
m is the mass of the object
g is the acceleration due to gravity
The acceleration due to gravity at a certain height h above the Earth is given by

where:
G is the gravitational constant
is the Earth's mass
is the Earth's radius
Here,

So the acceleration due to gravity is

We know that the mass of the object is
m = 70 kg
So, the gravitational force on it is
